$$F_{3}u(t) \stackrel{(t)}{=} C \stackrel{(t)}{=} V(t)$$

$$i(t) = C \frac{dv}{dt}$$

$$Power from gen. E_{3}i(t)$$

$$Energy from gen.$$

$$E = \int_{3}^{2} E_{3}C(\frac{dv}{dt}) dt = E_{3}C \int_{3}^{2} dv = CE_{3}^{2}$$

$$Twice the energy storad in C!$$

$$Arrabysis:$$

$$E_{3} \stackrel{(t)}{=} = I(s) \left\{ R + I/(sC) \right\} \rightarrow I(s)$$

$$i(t) = \left(E_{3}/R \right) e^{-t/RC}$$

$$Power in R : i^{2}(t)R$$

$$Energy lost in R;$$

$$E_{3} = \int_{3}^{2} I(t)R dt = CE_{3}^{2}/2$$

Re: graphs, CAD

temes

From:

"Kartikeya Mayaram" <karti@eecs.oregonstate.edu>

To:

<eecs-grads@engr.orst.edu>

Cc:

"Fiez, Terri / Oregon St " <terri@eecs.oregonstate.edu>; "Gabor Temes"

<temes@eecs.oregonstate.edu>; "U. Moon" <moon@eecs.oregonstate.edu>; "Patrick Chiang" <pchiang@eecs.oregonstate.edu>; "PavanKumar Hanumolu" <hanumolu@eecs.oregonstate.edu>; "Kartikeya Mayaram" <karti@eecs.oregonstate.edu>; "Molly Shor" <shor@eecs.oregonstate.edu>

Sent:

Tuesday, September 21, 2010 6:15 PM

Subject: Fall 2010 New Graduate Course: Analog Circuit Simulation ECE 521 - Analog Circuit Simulation - Fall 2010 (MW 2-3:50pm)

How this course adds to the curriculum?

This course supplements other courses in the circuit design area such as ECE 4/522, ECE 4/523, ECE 520. Students use the circuit simulator SPICE extensively in these courses but are not aware of the theoretical and practical aspects of building a circuit simulator such as SPICE. This course provides them with an understanding of the key issues and also provides a stronger foundation in circuit theory and numerical methods. Essentially, this course addresses "Everything you wanted to know about SPICE but were afraid to ask!"

When/Where

Fall 2010: MW 2-3:50pm (Room TBD)

Prerequisites

A background in circuit theory, ability to write software in (C, C++, or Fortran), and an appreciation for numerical methods

Topics

- 1. Formulation of circuit equations using the following methods: nodal analysis (NA), modified nodal analysis (MNA), and sparse tableau approach (STA)
- 2. Solution of linear equations with direct and iterative methods and sparse-matrix solution techniques
- 3. DC analysis of circuits and solution of nonlinear equations and convergence issues
- 4. Small-signal ac, transient, sensitivity, noise, and pole/zero analyses
- 5. Analysis methods for RF circuits

Instrumentation amplifier

Note the very high-resistance R_{bogus1} and R_{bogus2} resistors in the netlist (not shown in schematic for brevity) across each input voltage source, to keepSPICE from thinking V_1 and V_2 were open-circuited, just like the other op-amp circuit examples.

